

Lines

Equation of a Line in Space

For a line parallel to the vector $\langle a, b, c \rangle$ (the line's **direction vector**) and passing through point (x_0, y_0, z_0)

• Parametric equations

 $x = x_0 + \alpha t$ $y = y_0 + bt$ $z = z_0 + ct$ a, b, and c are the **direction numbers**

Symmetric equations

 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

Distance Between a Point and a Line in Space

Distance between point Q and a line in space.

$$\mathsf{D} = \frac{\|\vec{\mathsf{PQ}} \times u\|}{\|u\|}$$

P - Any point on the line; u - line's direction vector

of the line.

Planes

Equation of a Plane

The equation of a plane containing the point (x, y, z) and having normal vector $\langle a, b, c \rangle$:

Standard Form: $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$

General Form: ax + by + cz + d = 0

Distance Between a Point and a Plane

The distance between a point Q and a plane:

$$\mathsf{D} = \|\mathsf{proj}_{\mathsf{n}}\overrightarrow{\mathsf{PQ}}\| = \frac{|\overrightarrow{\mathsf{PQ}} \cdot \mathsf{n}|}{\|\mathsf{n}\|}$$

P - Any point in the plane; n - the plane's normal vector

Alternative Equation

Distance between a point (x_0 , y_0 , z_0) and plane ax + by + cz + d = 0

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Line of Intersection

If you have:

• The planes' equations: simultaneously solve the equations:

$$a_1x + b_1y + c_1z + d_1 = 0$$

 $a_2x + b_2y + c_2z + d_2 = 0$

 The planes' normal vectors: calculate the cross product of those vectors. The result will be a line with the same direction numbers as the intersection.

