

Preliminaries

Precondition

SSA - The law of signs is ambiguous only when the problem gives you two sides and a *non*-included angle, as at right.

Quick check for number of triangles

Calculate the length of a perpendicular (*h* in the diagram at right) from the end of the given adjacent side (*b*) to the adjacent side not specified (the bottom dashed line).

- $h = b \sin(A)$
- ⊳ a < h no triangle
- ⊳ a = h 1 triangle
- ightarrow a > h & a < b 2 triangles (i.e., ambiguous case)
- ⊳ a < h & a > b 1 triangle

Solve the Triangle

- 1 *Solve for a second angle* Use the Law of Sines to solve for one of the other angles; let's call this angle *B*.
- 2 Subtract $m \angle B$ from 180.
 - \triangleright This is a *possible* alternative to $\angle B$.
 - ▷ Let's call this new angle B_2 .
- 3 Add $m \angle B_2$ to your original angle (i.e., $\angle A$ in the diagram above).
- 4 Is the sum \geq 180?
 - ▷ Yes: the alternative doesn't work; you may ignore $\angle B_2$ and solve the triangle using only $\angle B$.
 - ▷ No: $\angle B_2$ is a viable alternative to $\angle B$; you will need to solve the triangle twice: once using $\angle B$ as the second angle and again using $\angle B_2$.

