Goodness of Fit ### Null and alternative hypotheses - H_0 : The stated distribution is correct - H_{α} : The stated distribution is not correct # Calculating χ^2 $$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}}$$ Degrees of freedom = #categories -1 #### Validity requirements X^2 tests are valid if: - Random data - 10% rule $n \le 0.1N$ · Large counts Expected counts > 5 # **Two-Way Tables** ### **Test for Homogeneity** ## Null and alternative hypotheses - H_0 : There is no difference in the distribution of the categories - H_{a} : There is a difference in the distribution of the categories # Calculating Expected Counts & Degrees of Freedom Expected Count = $$\frac{\text{(Row total)(Column total)}}{\text{Table total}}$$ Degrees of freedom = (#rows - 1)(#columns - 1) #### **Calculator Note** - χ^2 cdf P-value from χ^2 - χ^2 GOF–Test G'ness Fit - χ^2 –*Test* Ind. & Homog. # **Test for Independence** Same as above, except: # Null and alternative hypotheses - H_0 : There is no association among the categories (they are independent) - H_{α} : There is an association among the categories (they are not independent)