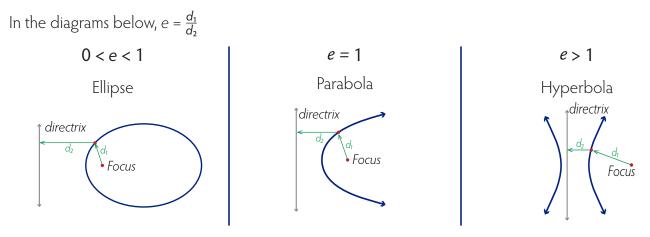


Conversions

Rectangular \rightarrow Polar	Polar \rightarrow Rectangular
$x = r\cos(\theta)$	$r^2 = x^2 + y^2$
$y = r\sin(\theta)$	$\tan(\theta) = \frac{y}{x}$

Conic Sections


Alternative Definition of a Conic Section

The set of points whose distance from a fixed point (the *focus*) and distance to a fixed line (the *directrix*) is a constant ratio.

► The constant ratio is the *eccentricity* (e) of the curve; its value determines the type of conic.

⊳ 0 < e < 1	Ellipse
⊳ e = 1	Parabola
⊳ e>1	Hyperbola

Eccentricity and Conic Type

Polar Equations of Conic Sections

Vertical Directrix (symmetric about polar axis)

$$r = \frac{ep}{1 \pm e \cos \theta}$$

Horizontal Directrix (symmetric about $\theta = \frac{\pi}{2}$)

$$r = \frac{ep}{1 \pm e \sin \theta}$$

e = eccentricity; |p| = distance between focus and directrix