

# The Basics

#### **Combined Gas Law**

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

 $P_1,P_2 - \textit{Pressure, any units;} \quad V_1,V_2 - \textit{Volume, any units;} \quad n_1,n_2 - \textit{moles;} \quad T_1,T_2 - \textit{Temp,} \\ \, ^\circ \text{K}$ 

#### **Ideal Gas Law**

PV = nRT

P - Pressure; V - Volume; n - number of moles; R - Ideal gas constant, see sidebar; T - Temp,  $^{\circ}K$ 

## Ideal Gas Constant, R

The value of the ideal gas constant, *R*, varies according to your units for pressure and volume:

•  $R = 0.0821 \text{ L} \cdot \text{atm/mole} \cdot \text{K}$ 

• R = 62.36 L-torr/mole-K

•  $R = 8.314 \text{ L} \cdot \text{kPa/mole} \cdot \text{K}$ 

### **Less Basic**

### Graham's Law

$$\frac{V_1}{V_2} = \sqrt{\frac{m_2}{m_1}}$$

v<sub>1</sub>, v<sub>2</sub> - Diffusion rate; m<sub>1</sub>, m<sub>2</sub> - molar mass

Note the unusual units here. This will be 1,000 times what we usually think of as molar mass.

Molecular RMS Velocity

$$v_{\rm rms} = \sqrt{\frac{3RT}{m}}$$

You need to use this value for R so that the velocity will come out in m/s.

 $v_{rms}$  - velocity, m/s; R - Ideal gas constant, 8.3145 J/mole $\cdot$ K; T - Temp,  $^{\circ}$ K; m - molecular mass in kg/mole