

Cylindrical & Spherical Coordinates

Cylindrical Coordinates

- Positions are specified in terms of an angle, θ , and distance (r) from the *pole* (the origin) in the x-y plane and a distance, z, above the x-y plane, as at right.
- Positions are expressed as an ordered triplet, (r, θ, z) .

Conversions

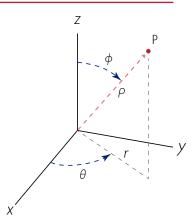
• Cylindrical (r, θ, z) to Rectangular (x, y, z)

$$\triangleright x = r \cos \theta$$
 $y = r \sin \theta$

$$y = r \sin \theta$$

$$Z = Z$$

• Rectangular (x, y, z) to Cylindrical (r, θ, z)


$$r^2 = x^2 + y^2$$
 $\tan \theta = \frac{y}{x}$ $z = z$

$$\tan \theta = \frac{y}{x}$$

$$Z = Z$$

Spherical Coordinates

- Positions are specified in terms of an angle θ and distance ρ from the pole (the origin) in the x-y plane and an angle ϕ from the z axis, as at right.
- Positions are expressed as an ordered triplet, (r, θ, ϕ) .

Conversions

$Spherical \leftrightarrow Rectangular$

Remember that p is the distance from the pole (not an angle).

• Spherical $(\rho, \theta, \overline{\phi})$ to Rectangular (x, y, z)

$$y = \rho \sin \phi \sin \theta$$

$$Z = Z$$

• Rectangular (x, y, z) to Spherical (ρ, θ, ϕ)

$$\triangleright x = r \cos \theta$$

$$y = r \sin \theta$$

$$Z = Z$$

Spherical \leftrightarrow Cylindrical

• Spherical (r, θ, ϕ) to Cylindrical (r, θ, z)

$$\theta = \theta$$

$$z = \rho \cos \phi$$

• Cylindrical (r, θ, ϕ) to Spherical (r, θ, z)

$$\triangleright \rho = \sqrt{r^2 + z^2}$$
 $\theta = \theta$

$$\theta = \theta$$

$$\phi = \cos^{-1}\left(\frac{z}{\sqrt{x^2 - a^2}}\right)$$