

#### Lines

## **Equation of a Line in Space**

For a line parallel to the vector  $\langle a, b, c \rangle$  (the line's **direction vector**) and passing through point  $(x_0, y_0, z_0)$ 

• Parametric equations

 $x = x_0 + \alpha t$   $y = y_0 + bt$   $z = z_0 + ct$ a, b, and c are the **direction numbers** 

Symmetric equations

 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$ 

### Distance Between a Point and a Line in Space

Distance between point Q and a line in space.

$$\mathsf{D} = \frac{\|\vec{\mathsf{PQ}} \times u\|}{\|u\|}$$

P - Any point on the line; u - line's direction vector

of the line.

# **Planes**

### **Equation of a Plane**

The equation of a plane containing the point (x, y, z) and having normal vector  $\langle a, b, c \rangle$ :

**Standard Form:**  $a(x - x_1) + b(y - y_1) + c(z - z_1)$ 

**General Form:** ax + by + cz + d = 0

### Distance Between a Point and a Plane

The distance between a point Q and a plane:

$$D = \| \operatorname{proj}_{\mathbf{n}} \overrightarrow{PQ} \| = \frac{| \overrightarrow{PQ} \cdot \mathbf{n} |}{\| \mathbf{n} \|}$$

P - Any point in the plane; n - the plane's normal vector

### Alternative Equation

Distance between a point ( $x_0$ ,  $y_0$ ,  $z_0$ ) and plane ax + by + cz + d = 0

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Line of Intersection

To find the direction numbers of the line of intersection of two planes:

- Take the cross product of the two normal vectors.
- Simultaneously solve the two planes' equations:

$$a_1x + b_1y + c_1z + d_1 = 0$$

$$a_2x + b_2y + c_2z + d_2 = 0$$

| Angle Between Two Planes |                                        |
|--------------------------|----------------------------------------|
| $\cos \theta = $         | $ n_1 \cdot n_2 $<br>$  n_1     n_2  $ |