

Finding Extrema Using Critical Numbers

Determining Critical Numbers

 (x_0, y_0) is a critical number of f(x, y) if one of the two conditions are true:

- ▷ $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$
- $\triangleright f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist

Second Partials Test

If $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$, then (x_0, y_0) is a local maximum, local minimum, or a saddle point. We can determine which it is using the *Second Partials Test*.

Second Partials Test

To test whether a critical point (x_0, y_0) is a local max, min, or saddle point:

- 1 If $f_x(x_0, y_0) \neq 0$ or $f_y(x_0, y_0) \neq 0$, then the point is not a max, min, or saddle point; you're done.
- 2 Otherwise, calculate a value, d:

 $d = f_{XX}(x_0, y_0) f_{YY}(x_0, y_0) - [f_{XY}(x_0, y_0)]^2$

- 3 Interpret *d* as follows:
 - ▷ If d > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a relative minimum
 - ▷ If d > 0 and $f_{xx}(x_0, y_0) < 0$, then (x_0, y_0) is a relative maximum
 - ▷ If d < 0, then $(x_0, y_0, f_x(x_0, y_0))$ is a relative saddle point
 - ▷ If d = 0, the test is inconclusive

Lagrange Multipliers on next page

Lagrange Multipliers

Lagrange multipliers allow you to find the maximum and minimum values of a multivariable function f(x, y) in the presence of constraints. The presentation here is for two variables, x and y, but can be easily extended to more.

Notation

f(x, y) is the function

g(x, y) = c is the constraint

We shall introduce a new variable, λ (our Lagrange multiplier), such that

 $\nabla f(x,y) = \lambda \nabla g(x,y)$

The Method

1 Solve the system of equations:

$$f_x(x,y) = \lambda g_x(x,y)$$
$$f_y(x,y) = \lambda g_y(x,y)$$
$$g(x,y) = c$$

You do remember ∇ , yes?

The gradient, ∇ , is a vector quantity defined as: $\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j}$ Extend the pattern for more variables: $\nabla f(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$

Usually, you will solve one of the equations for λ , then substitute that into the next equation, etc.

- 2 Evaluate f(x, y) at each of the solution points found in step 1.
 - ▷ The greatest value will be the maximum.
 - ▷ The least value will be the minimum.