Conversions

Rectangular \rightarrow Polar

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Polar \rightarrow Rectangular

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& \tan (\theta)=\frac{y}{x}
\end{aligned}
$$

Derivatives, Tangent Lines, etc.

Slope

$$
\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / d \theta}
$$

Tangent Lines at the Pole
If $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$, then the line $\theta=\alpha$ is tangent at the pole to the curve $r=f(\theta)$

Note that the tangent is horizontal when $d y / d \theta$ is zero and vertical when $d x / d \theta$ is zero

Common Curves

Lines

$$
\theta=\text { constant }
$$

Line through origin

$$
r=a \csc (\theta)
$$

Horizontal line

$$
r=a \cos (\theta)
$$

Circle centered at $\left(\frac{a}{2}, 0\right)$

$$
r=a \sec (\theta)
$$

Vertical line

Circles

$$
r=\text { constant }
$$

Circle centered at origin

$$
r=a \sin (\theta)
$$

Circle centered at ($0, \frac{a}{2}$)

Limaçon $\quad r=a \pm b \sin (\theta)$ rather than up or down.

Rose

$$
r=a \sin (n \theta)
$$

- n even: $2 n$ petals
- n odd: n petals
- 1st petal starts tangent to the axis

$$
r=a \cos (n \theta)
$$

- n even: $2 n$ petals
- n odd: n petals
- 1st petal starts centered on the axis

Lemniscates

- sine: petals aligned 45°
- cosine: petals on x-axis

$r^{2}=a^{2} \cos (2 \theta)$

