Area in Polar Coordinates

For a function $r=f(\theta)$, the area bounded by the arc and the radial lines $\theta=\alpha$ and $\theta=\beta$ is

$$
A=1 / 2 \int_{a}^{\beta}[f(\theta)]^{2} d \theta=1 / 2 \int_{a}^{\beta} r^{2} d \theta
$$

Arc Length of a Polar Curve

For a function $r=f(\theta)$, the length of the arc encompassed by the radial lines $\theta=\alpha$ and $\theta=\beta$ is

$$
s=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta=\int_{\alpha}^{\beta} \sqrt{r^{2}+[\mathrm{d} r / \mathrm{d} \theta]^{2}} \mathrm{~d} \theta
$$

Area of a Surface of Revolution

The area of the surface formed by revolving the graph of $r=f(\theta)$ from $\theta=a$ to $\theta=\beta$ about the indicated line is as follows.

About the Polar Axis $(\theta=0)$

$$
S=2 \pi \int_{a}^{\beta} f(\theta) \sin (\theta) \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta=\int_{a}^{\beta} f(\theta) \sin (\theta) \sqrt{r^{2}+[\mathrm{d} r / \mathrm{d} \theta]^{2}} \mathrm{~d} \theta
$$

About the Line $\theta=\pi / 2$

$$
S=2 \pi \int_{\alpha}^{\beta} f(\theta) \cos (\theta) \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta=\int_{\alpha}^{\beta} f(\theta) \cos (\theta) \sqrt{r^{2}+[\mathrm{d} r / \mathrm{d} \theta]^{2}} \mathrm{~d} \theta
$$

\qquad

