Version 2: x is horizontal

General Form

$$Ax^2 + By^2 + Cx + Dy + E = 0$$

Parabola x or y is squared, but not both $x^2 \& y^2$ have the same coefficient Circle

 $x^2 \& y^2$ have the same signs Ellipse *Hyperbola* $x^2 \& y^2$ have different signs

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

• eccentricity = 0

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

• The semi-major axis is the larger of a or b.

- $d_1 + d_2 = 2(semi-major\ axis)$
- $c^2 = |a^2 b^2|$
- 0 < eccentricity < 1 (closer to 0 means rounder)

Terminology

- Distance to the focus (plural: foci)
- Major axis Long axis Long radius Semi-major axis Short axis Minor axis Short radius Semi-minor axis

What's Eccentricity?
$$e = \frac{C}{\text{semi-major axis}}$$

Parabola

Vertical

$$(x-h)^2 = 4p(y-k)$$

Horizontal
$$(y-k)^2 = 4p(x-h)$$

- p is the distance from the vertex to the focus.
- The directrix and focus are the same distance from the vertex.
- eccentricity = 1

Hyperbola

Centered at (0,0)

Horizontal axis

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Vertical axis

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

Asymptotes

$$y = \pm \frac{b}{a}x$$

Notes

- Vertical if y is positive Horizontal if x is positive
- $c^2 = a^2 + b^2$